<u>Important informations regarding recruitment of</u> Manager (Technical) and Assistant Manager (Technical)

Method of Selection/Scheme of Examination

A) Post: Manager (Technical)

Selection process shall consist of three parts:

- a) Written Test 50% weightage: Syllabus for written test shall consist of following sections
 - i. Reading comprehension
 - ii. Logical and mathematical reasoning
 - iii. Technical abilities in Computers and IT
- b) Presentation on implemented IT project(s) (Projects done by candidate) 30% weightage
- c) Group Discussions 20% weightage

Written Test shall be MCQ (Multiple Choice Questions) consisting of 50 questions of one mark each. Negative marking for evaluation shall be applied. Each correct answer be given +1 marks and each incorrect answer be given -1/4 marks.

B) Post: Assistant Manager (Technical)

Selection shall be only on the basis of the merit list as per performance in Written Test (consisting of Multiple Choice Questions; each question having only one correct answer). The test shall consist of 100 questions, each carrying 1 marks and shall be divided into three sections as follows:

- a) Reading comprehension (20%): 20 Marks
- b) Logical and Mathematical Reasoning (20%): 20 Marks
- c) Technical Abilities in Computers and IT (60%): 60 Marks

Negative marking for evaluation shall be applied. Each correct answer be given +1 marks and each incorrect answer be given -1/4 marks.

Date and Time of Written Examination

S. No.	Post	Date & Time
1.	Manager (Technical)	9 th November, 2013 – 10.30 AM to 11.30 AM
2.	Assistant Manager (Technical)	9 th November, 2013 – 10.30 AM to 12.30 PM

Syllabus of written examination for both posts:

Section A: Reading Comprehension

A small English composition and questions based on this.

Section B: Logical and Mathematical reasoning

Mathematical Logic: Propositional Logic; First Order Logic.

Probability: Conditional Probability; Mean, Median, Mode and Standard Deviation; Probability distributions; uniform, normal, exponential, Poisson, Binomial.

Set Theory & Algebra: Sets; Relations; Functions; Groups; Partial Orders; Boolean Algebra.

Combinatorics: Permutations; Combinations; Counting; Summation; generating functions; recurrence relations.

Graph Theory: Connectivity; spanning trees; Cut vertices & edges; covering; matching; independent sets; Colouring; Planarity

Linear Algebra: Matrices, determinants, systems of linear equations, Eigen values & vectors.

Section C: Technical Abilities in CSE and IT

Digital Logic: Binary number system, logic gates, Boolean Expressions, Minimization, K-maps, Quine-Mccluskey Design of Combinational circuits. and sequential circuits.

Computer Organization and Architecture: Von-neumann architecture, Number representation and computer arithmetic (fixed and floating point), ALU and datapath design, registers and micro operations, Control Unit design, Machine instructions, Addressing modes, Memory organization - Cache and main memory, Secondary storage, Cache coherence, I/O interface (Interrupt and DMA mode), Instruction pipelining.

Programming Fundamentals: Programming in C, Data types, enumerated data types, Array, Pointers, Structure, Unions, Identifiers – scope, extent, binding, precedence of operators, control flow, functions, parameter passing, Recursion, file handling, command line arguments.

Fundamentals of object oriented programming – objects, classes, inheritance, polymorphism.

Data Structures and Algorithms: Abstract data types, Arrays, Linked Lists, Sorting, Searching, Stack, Queue, Binary trees, binary search trees, binary heap, Graphs and their representations, symbol table, hashing.

Techniques of algorithm design: Greedy, Dynamic programming, Divide-and-conquer; Tree and graph traversals, Connected components, Spanning trees, Shortest paths, Hashing, Sorting, Searching. Complexity analysis (best, worst, average cases) of time and space, Basic concepts of complexity classes – P, NP, NP-hard, NP-complete.

Compilers: Regular expressions, Lexical Analysis, Context free grammar, Parsing, Syntax directed translation, Semantic Analysis, Intermediate code generation, Basics of code optimization.

Operating Systems: Processes, Threads, Inter-process communication, Concurrency, Synchronization, Deadlock, CPU scheduling, Memory management and virtual memory, File systems, I/O systems, Protection and security. Case Study: Windows, Linux

Database Management System: ER models, Relational model (algebra, Calculus) database design - normalization, Integrity Constraints, File structures (sequential, B/B++), indexing, Transactions and concurrency control, SQL, triggers.

Software Engineering: information acquisition, requirement and feasibility analysis, data flow diagrams, process specifications, input/output design, process life cycle, planning and managing the project, design, coding, testing, implementation, maintenance.

Computer Networks: ISO/OSI stack, LAN technologies (Ethernet, Token ring), Flow and error control techniques, Routing algorithms, Congestion control, TCP/UDP and sockets, IP(v4), Application layer protocols (icmp, dns, smtp, pop, ftp, http); Basic concepts of hubs, switches, gateways, and routers. Network security – basic concepts of public key and private key cryptography, digital signature, firewalls.

Web technologies: HTML, XML, basic concepts of client-server computing.